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Protein Folding as a Stochastic Process 

N o b u h i r o  G~  l 

In physiological conditions globular protein molecules assume a specific native 
conformation uniquely determined by its amino acid sequence. Upon environ- 
mental changes the protein molecules undergo reversible unfolding (order los- 
ing) and folding (order gaining) transitions, which is similar to the first-order 
phase transition. Pathways of folding have been intensively studied in the hope 
of deciphering the code that amino acid sequences carry as to the three- 
dimensional structure of proteins. A strongly simplified lattice model of proteins 
has been found to be a powerful theoretical tool to simulate the dynamic process 
of the folding and unfolding transitions. The results of the simulation indicate 
the existence of stochastic pathways of folding. 

KEY WORDS: Protein folding; lattice model; computer simulation; Mar- 
kov process. 

1. INTRODUCTION 

Proteins are copolymers of 20 amino acids with genetically determined 
definite sequences. Many proteins assume specific native more-or-less glob- 
ular conformations in the physiological state. It is generally believed and 
has been demonstrated experimentally for some proteins that the specific 
conformation of a protein molecule is realized as a thermal equilibrium 
state.(l~ This denies involvement of any previous history of the molecule in 
the determination of the native conformation. The specific native confor- 
mation of the protein molecule, even though very complex in general, is 
uniquely determined by its amino acid sequence and its environment. 

When one or more environmental parameters are shifted away from 
the physiological values, globular proteins generally undergo an unfolding 
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transition to assume a disordered unfolded state. This transition is generally 
reversible upon  regeneration of the enviroment,  which is the manifestat ion 
of the equilibrium nature of the native conformation.  F r o m  the biological 
point  of view the process of folding is a prototype of morphogenet ic  
phenomena  and  in this process the information about  the three-dimen- 
sional structure coded  in the amino acid sequence is decoded.  Elucidat ion 
of this code is a fundamenta l  biological problem. Studies of the detailed 
process of folding and unfolding transition are expected to lead to the 
elucidation of the code. 

F r o m  the physical point  of view, a protein molecule is an information-  
carrying finite system. The folding and unfolding transition is a phenome-  
non  similar to the first-order phase transition. In this paper  I will discuss 
basic statistical-physical problems of the folding and unfolding transition in 
globular proteins. 
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Fig. 1. Schematic illustration of the behavior of homopolypeptide chains in the helix-coil 
transition. States H and C are 100% and 0% helical states, respectively. (a) The mean value of 
a degree of order over many molecules is plotted against temperature. (b) Attention is focused 
on one molecule. The degree of order of this molecule is plotted against time for three 
temperatures. (c) Probability of the molecule existing in states with various degrees of order is 
plotted for the three temperatures. 
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2. BASIC CHARACTER OF THE TRANSITION 

Figures 1 and 2 illustrate the basic statistical-physical character of the 
folding and unfolding transition in globular proteins as compared with the 
helix-coil transitions in synthetic polypeptides. The helix-to-coil transition 
proceeds as the fraction of disordered parts in each molecule increases. In 
contrast to this the unfolding transition in globular proteins proceeds as the 
number of molecules existing in the folded state decreases with an accom- 
panying increase of the number of molecules existing in the unfolded state. 
In this sense the unfolding transition in globular proteins is similar to the 
first-order phase transition. 

The characteristic of the helix-coil transition illustrated in Fig. 1 is a 
direct consequence of the one-dimensionality of the phenomena. According 
to the famous theorem due to Landau, (2) macroscopic phases cannot 
coexist in a one-dimensional system. Thus, at the midpoint of the transition 
ordered (helical) and disordered (random coil) sections of microscopic 
lengths alternate within each polypeptide chain. The one-dimensionality of 
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Fig. 2. Schematic illustration of the behavior of protein molecules in the folding and 
unfolding transition. States N and D are the folded native and unfolded denatured states, 
respectively. The three parts (a)-(c) show the same aspects as in Fig. 1. 
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the helix-coil transition is a consequence of the fact that important intramo- 
lecular interactions responsible for the phenomenon are those between 
parts close along the chain. These interactions are called short-range 
interactions. 

The characteristic of the folding and unfolding transition in globular 
proteins as illustrated in Fig. 2 indicates that intramolecular interactions 
between parts far along the chain (but close in space) are important. These 
interactions are called long-range interactions. Thus, the long-range interac- 
tions are important in the folding and unfolding transitions in globular 
proteins. 

At the same time importance of the short-range interactions is also 
amply evidenced. Most convincing is the fact that local secondary struc- 
tures within globular proteins such as a-helices, fi-strands and turns can be 
predicted fairly well from the amino acid sequence by various algorithms in 
which essentially only the short-range interactions are considered. (3) 

3. LATTICE MODEL OF PROTEIN 

For understanding the folding and unfolding transition in globular 
proteins, both the long- and short-range interactions must be considered at 
the same time. It is also essential that the molecule has no simple repeating 
symmetry. For this very reason a protein molecule carries information and 
can have complex but specific native conformations. 

The extent to which we can understand such systems by analytic 
treatments is limited. Instead, the method of computer simulation could be 
a powerful theoretical method. However, the simulation can be carried out 
only when the model is a strongly simplified one. It takes an impossibly 
large amount of computer time to carry out simulation for any realistic 
models of atomic resolution. The conformational changes in one step of 
computer calculation in realistic models may correspond to those in real 
proteins taking place in a time interval of the order of l 0  -13 sec  

(characteristic time for molecular vibrations). Proteins fold roughly in the 
order of 10 ~ sec. In order to simulate this, 1013 steps of calculation are 
necessary, requiring l014 sec  Of computer time (10 sec is assumed for one 
step). If 10 4 sec is a reasonable upper limit of the computer time for the 
problem of protein folding, we need a simplification of the model that can 
cut the computer time by a factor of 101~ This is a drastic simplification. 
We must attain this simplification without losing the essence of the phe- 
nomena. A lattice model of protein folding has been proposed and stud- 
ied (4-14) as a model which satisfies this criterion. 

A lattice protein molecule is a self-avoiding chain polymer on a 
two-dimensional square lattice ( 4'5'7-9'11-14) or on a three-dimensional cubic 
lattice. (6'1~ In the present paper I will discuss only results on the two- 
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Fig. 3. The native conformation of protein SP in the two-dimensional square lattice. 

dimensional model. As a result of specific intramolecular interactions 
described below, the protein molecule assumes a specific native conforma- 
tion at low temperatures. 

The native conformation of protein SP, which we study in this paper, 
is shown in Fig. 3. Black squares in Fig. 4 show the nearest-neighbor units 
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Fig. 4. Specification of the attractive long-range interactions in protein SP in terms of 
interactable pairs shown by black and shaded squares. Both abscissa and ordinate indicate 
residue number. Black pairs are those occupying nearest-neighbor lattice points in the native 
conformation of Fig. 3. When a pair of interactable units occupies nearest-neighbor lattice 
points, the energy of the system is assumed to decrease by e. 
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in this native state. In addition to them, 148 randomly selected pairs are 
shown by shaded squares. We call those pairs shown by black and shaded 
squares interactable units. When a pair of interactable units occupy nearest- 
neighbor lattice points in an arbitrary conformation, we assume that the 
energy of the system decreases by e. These interactions are a model of the 
long-range interactions. When a smaller (larger) number of randomly 
selected pairs is employed, the specificity of the interactions increases 
(decreases). 

As a model of the short-range interactions, we consider "bond ener- 
gies," each of which is a function of a "bond angle." When the bond angle 
at the ith unit (i = 2,3 . . . . .  48) takes the same value as in the native 
conformation, the bond energy of the ith unit is lower by e' than the other 
two possible cases. Relative weights of the long- and short-range interac- 
tions can be changed by changing the relative values of e and e'. 

Simulation is carried out by the Monte Carlo method of Metropolis et 
al. (LS) By this method a good sample of the equilibrium population of 
various conformations at a given temperature T is effectively produced. In 
this paper we express temperature as a dimensionless quantity T* defined 
by k T / e  o, where k is the Boltzmann constant and e o is the unit of energy 
defined by e 0 = c + e'. It has been shown (4~ that the trial number of the 
Monte Carlo simulation is approximately proportional to physical time. 
Therefore, we will analyze records of simulation as dynamical records. 

4. RESULTS AND DISCUSSION 

Records of long computer simulations carried out at the melting 
temperatures T* for four different relative weights of the long- and short- 
range interactions (c, ~') = (0.75e 0, 0.25E0), (0.5e 0, 0.5E0), (0.25e0, 0.75e0), and 
(0, ~0) are shown in Fig. 5. (8~ 

Very long runs of 8.0 • 105 trials for the case of (0.75eo,0.25e0) are 
shown in Figs. 5a and 5b, in each of which we observe the unfolding or 
folding transition only once. This means that the lattice polymer spends 
most of its time in either the folded or unfolded states. The probability of 
its being in the intermediate states is very low. This is the behavior expected 
for systems undergoing a first-order-type transition. 

The case of (0.5c 0, 0.5Co) is shown in Fig. 5c. The folding and unfold- 
ing transitions are observed to occur more frequently than in the case of 
(0.75E0, 0.25c0). Yet the polymer still spends most of its time in either the 
folded or unfolded states. 

In the case of (0.25e 0' 0.75e0) (Fig. 5d) the polymer goes back and forth 
between the folded and unfolded states frequently. The probability of being 
in the intermediate states is appreciable. 
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Fig. 5. Records of conformational changes at melting temperatures 7'* for four different 
relative weights of (~, d). (a) and (b): (0.75c0, 0.25%), T* = 0.675; (c): (0.5%, 0.5%), Tm* = 0.6; 
(d): (0.25%, 0.75%), T* = 0.525; (e) and (f): (0, Co), 7"* = 0.7. Ordinate is the conformational 
energy counted in units of (-Co).  
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The transition in the case of (0, Co) (Fig. 5e and 5f) is of the graded 
type. Conformational fluctuations within a limited range of energy count 
are observed around the mean value. 

In order to quantify the kinetic behavior of the system, normalized 
time correlation functions defined by 

epe(t)=[(P(O)P(t))-(P)2]/((P2)-(P) 2) (1) 

are calculated from the record of computer simulation. Here P(t) is the 
value of a certain physical quantity, P, at time t. As the physical quantity 
P, we take the long- and short-range interaction energies and the radius of 
gyration. The computed normalized time correlation functions are shown in 
Figs. 6a and 6b. (12) They can be expressed as a sum of two simple 
exponential terms. The slower relaxation time does not depend on the 
nature of the physical quantities for which the correlation functions are 
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Fig. 6. Normalized time correlation functions for three time-dependent quantities computed 
from the records of simulation. (Records for another protein AB with a different native 
conformation (~2) are used) (c, ~') = (0.75%, 0.25%). x ,  for the long-range interaction energy; 
O, for the short-range interaction energy; A ,  the radius of gyration. (a) short-time range. (b) 
long-time range. 
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obtained. This indicates that the slower relaxation time corresponds to the 
overall folding and unfolding transition. The faster relaxation time reflects 
the conformational fluctuations within each of the folded and unfolded 
states. 

From a series of computer simulations for various choices of parame- 
ters, the following conclusions have been reached: 

(1) Specificity of the long-range interactions as well as the non-one- 
dimensionality is important for the first-order-type character of folding and 
unfolding transition. 

(2) The nonspecific component of the long-range interactions (a) 
reduces the cooperativity of the transition and (b) decelerates the kinetic 
rate of transition. 

(3) The short-range interactions (a) reduce the cooperativity of the 
transition, but (b) accelerate the kinetic rate of transition. 

In order to approach the ultimate goal of elucidating the information 
about the three-dimensional structure coded in the amino acid sequence, 
we must clarify more details of the process of folding. By inspection of Fig. 
5 we see that the series of events in each case of a folding and unfolding 
transition as monitored by one conformational parameter (here, the confor- 
mational energy) are different. This situation does not change, even when 
monitored by two conformational parameters. Figures 7a and 7b are 
examples of trajectories of two cases of folding transitions in two- 
dimensional conformational space. (13) The state point leaves random-walk- 
like trajectories. It is clear that the folding and unfolding transition is 
stochastic. 

A simplest case is one in which we can define a series of intermediate 
states between which a protein molecule undergoes transitions as a Markov 
process. If this is possible, each intermediate state contains the necessary 
and sufficient information to determine its future destiny in the stochastic 
sense. 

Can the record of conformational changes as monitored by one 
conformational parameter such as shown in Fig. 5 be regarded as a Markov 
process? In order to see this, we calculated from the record the conditional 
probability of transition in one step from one state to another, both 
characterized by certain values of the conformational parameter. From the 
conditional probability, we obtained the normalized time correlation func- 
tion by assuming a Markov process. This normalized time correlation 
function was found to decay much faster than that obtained directly from 
the record of simulation. ( 14~ This indicates that there are essential variables 
hidden behind the record of simulation. For elucidation of the kinetic 
process of folding, we must define a good set of intermediate states by 
specifying the hidden variables. 
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Fig. 7. Trajectories of the state point in two-parameter space in two events of folding in 
protein SP. AbsciSsa is the total energy count and ordinate is the number  of free bond angles 
(those that assume non-native values). 
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